Light-regulated hypocotyl elongation involves proteasome-dependent degradation of the microtubule regulatory protein WDL3 in Arabidopsis.
نویسندگان
چکیده
Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit growth in the light. Here, we demonstrate that WAVE-DAMPENED 2-LIKE3 (WDL3), a microtubule regulatory protein of the WVD2/WDL family from Arabidopsis thaliana, functions in hypocotyl cell elongation and is regulated by a ubiquitin-26S proteasome-dependent pathway in response to light. WDL3 RNA interference Arabidopsis seedlings grown in the light had much longer hypocotyls than controls. Moreover, WDL3 overexpression resulted in overall shortening of hypocotyl cells and stabilization of cortical microtubules in the light. Cortical microtubule reorganization occurred slowly in cells from WDL3 RNA interference transgenic lines but was accelerated in cells from WDL3-overexpressing seedlings subjected to light treatment. More importantly, WDL3 protein was abundant in the light but was degraded through the 26S proteasome pathway in the dark. Overexpression of WDL3 inhibited etiolated hypocotyl growth in regulatory particle non-ATPase subunit-1a mutant (rpn1a-4) plants but not in wild-type seedlings. Therefore, a ubiquitin-26S proteasome-dependent mechanism regulates the levels of WDL3 in response to light to modulate hypocotyl cell elongation.
منابع مشابه
Light-Regulated Hypocotyl Elongation Involves Proteasome-Dependent Degradation of the Microtubule Regulatory Protein WDL3 in ArabidopsisC W OA
Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit gro...
متن کاملCOP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a well-known E3 ubiquitin ligase, functions as a central regulator of plant growth and photomorphogenic development in plants, including hypocotyl elongation. It has been well-established that, in darkness, COP1 targets many photomorphogenesis-promoting factors for ubiquitination and degradation in the nucleus. However, increasing evidence has shown that ...
متن کاملEthylene Regulates the Arabidopsis Microtubule-Associated Protein WAVE-DAMPENED2-LIKE5 in Etiolated Hypocotyl Elongation.
The phytohormone ethylene plays crucial roles in the negative regulation of plant etiolated hypocotyl elongation. The microtubule cytoskeleton also participates in hypocotyl cell growth. However, it remains unclear if ethylene signaling-mediated etiolated hypocotyl elongation involves the microtubule cytoskeleton. In this study, we functionally identified the previously uncharacterized microtub...
متن کاملArabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling.
Photomorphogenesis is regulated by red/far-red light-absorbing phytochromes and blue/UV-A light-absorbing cryptochromes. We isolated an Arabidopsis thaliana blue light mutant, short hypocotyl under blue1 (shb1), a knockout allele. However, shb1-D, a dominant allele, exhibited a long-hypocotyl phenotype under red, far-red, and blue light. The phenotype conferred by shb1-D was caused by overaccum...
متن کاملSHORT HYPOCOTYL IN WHITE LIGHT1, a serine-arginine-aspartate-rich protein in Arabidopsis, acts as a negative regulator of photomorphogenic growth.
Light is an important factor for plant growth and development. We have identified and functionally characterized a regulatory gene SHORT HYPOCOTYL IN WHITE LIGHT1 (SHW1) involved in Arabidopsis (Arabidopsis thaliana) seedling development. SHW1 encodes a unique serine-arginine-aspartate-rich protein, which is constitutively localized in the nucleus of hypocotyl cells. Transgenic analyses have re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 25 5 شماره
صفحات -
تاریخ انتشار 2013